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Two-band random matrices
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Spectral correlations in unitary invariant, non-Gaussian ensembles of large random matrices possessing an
eigenvalue gap are studied within the framework of the orthogonal polynomial technique. Both local and
global characteristics of spectra are directly reconstructed from the recurrence equation for orthogonal poly-
nomials associated with a given random matrix ensemble. It is established that an eigenvalue gap does not
affect the local eigenvalue correlations that follow the universal sine and the universal multicritical laws in the
bulk and soft-edge scaling limits, respectively. By contrast, global smoothed eigenvalue correlations do reflect
the presence of a gap, and are shown to satisfy a new universal law exhibiting a sharp dependence on the odd
or even dimension of random matrices whose spectra are bounded. In the case of an unbounded spectrum, the
corresponding universal “density-density” correlator is conjectured to be generic for chaotic systems with a
forbidden gap and broken time reversal symméditBA.063-651X98)04206-9

PACS numbeps): 05.45:+b, 02.10.Sp, 05.46j

I. INTRODUCTION p dk
V(e)=2, —e®, d,>0, 2

> 1
Ensembles of large random matriddsgenerated by the =1 2K

joint distribution functionP[H]x exp{—8Tr V[H]}, with : " L
5 being a symmetry parameter as explained below, may di so that we may consider the phase transitions as occurring in
play phase transitions under nonmonotonic deformation o d} space. Because the confmemen} potential is an even
the confinement potentiaf[ H]. Different phases are charac- unction, the associated random matrix model possesses so-
terized by topologically different arrangements of eigenval-ca”ed .22. symmetry. .

ues in random matrix spectra that may have multiple-band. Variations of the coupling const_a_ntg "’.IffeCt the Dyson den-
structure. Random matrices, whose spectra undergo pha 'y_V_D l,nchat Ean (lla)e ;?Jlljar'lgctb{orglr::crﬂ:ilgl?z;?i?)rjrggng?rzirg{
transitions, appear in quantizing two-dimensional grajity I NT d Ef\l q- (L, J

3], in the context of quantum chromodynamjdss], as well  J ¥o(€)de=N,

as in some models of particles interacting in high dimensions dv vo(2)

[6]. Transition regimes realized in invariant random matrix __pf d¢ D>~ 3
ensembles have implications for a certain class of Calogero- de e=¢

Sutherland-Moser mode]3]. These matrix models may also

be applicable to chaotic systems having a forbidden gap iwhere P indicates a principal value of the integral. When all
the energy spectrum. d, are positive, so that the confinement potential is mono-

In the eigenvalue representation, the invariant randonfonlic, the spectral density, has a single-band support,

matrix model is defined by the joint probability distribution =1+ Nonmonotonic deformation of the confinement poten-
function[8] tial can be carried out by changing the signs of someof

(k#p). Such acontinuousvariation of coupling constants
may lead, under certain conditions, to discontinuous
N change of the topological structure of spectral density
P({eh=2y" I] lei—¢lPI] exp{-BV(s0} (1)  when the eigenvaludg:} are arranged iv;,>1 “allowed”
i>j=1 k=1 T : "
bands separated by “forbidden” gaps.
The phase structure of the HermitiaB<€2) one-matrix

of N eigenvalues{e}={e;, ... .en} Of an NXN random model Eq(1) has been studied in a number of wofRs-12,
matrix H. The symmetry parametg coincides with a num- Where the simplest examples of nonmonotonic quartic and
ber of independent elements in off-diagonal entries of a ranSeXtic confinement potentials have been examined. It has
dom matrixH. For real symmetric matriceg=1 (orthogo-  Peen found that there are domains in the phase space of
nal symmetry, S=2 for Hermitian matrices(unitary ~ COUPling constants where only a particular solution fgr
symmetry, and3=4 for self-dual Hermitian matricesym-  €Xists, and it has a fixed numhéf, of allowed bands. How-
plectic symmetry. It is convenient to parametrize the con- €Ver, in some regions of the phase space, one can have more

finement potentiaV/(s) entering Eq(1) by a set of coupling than one kind of solution of the saddle-point equatigh In
constantgd} ={d;, .,dp}, this situation, solutions with a different number of bands

MY A2, .. are present simultaneously. When such an
overlap appears, one of the solutions, $é§), has the low-
*Present address: Condensed Matter Section, The Abdus Sala@st free energ;ﬁ(N") , and this solution is dominant, while the
International Center for Theoretical Physics, P.O. Box 586, 3410®thers are subdominant. Moreover, numerical calculations
Trieste, Italy. [12] showed that some special regimes exist in which the

N
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bulk spectral density obtained as a solution to the saddleThis correlation function can explicitly be expressed in terms
point equation(3) differs significantly from the genuine level of the two-point kerneKy(e,&e’) as follows:
density computed numerically within the framework of the
orthogonal polynomial technique. It was then argued that Ru(e1, - .. .en)=dellKn(ei,ej)llij=1,...n- &)
such a genuine density of levels cannot be interpreted as a
multiband solution with an integer number of bands. A full Here,
understanding of this phenomenon is still absent. , ,

Recently, interest was renewed in multiband regimes in (o ~1)=c, en(e ) en-1(e) — en(e)on-1(e ), ©6)
invariant random matrix ensembles. An analysis based on a e'—¢
loop equation techniquil3,14] showed that fingerprints of
phase transitions appear not only in the Dyson density buand the “eigenfunctions”
also in the (universal wide-range eigenvalue correlators,
which in the multiband phases differ from those known in en(e)=Pn(e) exp{—V(e)} 7
the single-band phagé&5-17. A renormalization-group ap-
proach developed in Reff18] supported the results found in
Refs.[13,14] for the particular case of two allowed bands,
referring a new type of universal wide-range eigenlevel cor- Foo
relators to an additional attractive fixed point of a renormal- f du(e)Pn(e)Pn(e)=nm, (8
ization group transformation. o

The method of Iqop eq'uatlo[[QS,M], used for a treat— and obeying the recurrence equation
ment of non-Gaussian, unitary invariant, random matrix en-
sembles fallen in a multiband phase, is only suitable for com- ePy_1(8)=CyPy(&)+Cn1Pp_s(e). (9)
puting the global characteristics of spectrum. Therefore, an
appropriate approach is needed that is capable of analyzinghe recurrence coefficients, entering Eqs(6) and (9) are
local characteristics of the spectrumanifested on the scale uniquely determined by the measutg. Equations(5) and
of a few eigenlevels A possibility to probe the local prop- (6) demonstrate that the problem of eigenvalue correlations

erties of the eigenspectrum is offered by the method of oris reduced to that of finding asymptotes for the eigenfunc-
thogonal polynomials. A step in this direction was taken in ations ¢y .

recent papefl9], where an ansatz was proposed for lakge-

are determined by the set of polynomials orthogonal with
respect to the measudu(e) =exp{—2V(e)}de,

asymptotes of orthogonal polynomials associated with a ran- Il. MAPPING RECURRENCE EQUATION

dom matrix ensemble having two allowed bands in its spec- ONTO DIFFERENTIAL EQUATION

trum. Because the asymptotic formula proposed there is of

the Plancherel-Rotach typ@0], it is only applicable for To map a recurrence E¢9) onto a second-order differ-

studying eigenvalue correlations in the spectrum bulk aneential equation for eigenfunctions,, we note that the first

cannot be used for studying local correlations in an arbitraryerivatived P, /de can be represented §21,22

spectrum rangdfor example, near the edges of two-band

eigenvalue suppoxt dP,
The aim of the present paper is to develop a new approach de

(within an orthogonal polynomial schepnthat allows for a

unified treatment of eigenlevel correlations in the unitary in-where

variant UN) matrix model (3=2) with a forbidden gap.

This is a further extension of the Shohat methail,22 that

has been used previously by the authors to studi)Ui-

variant ensembles of large random matrices in the single-

band phas¢23,24). In particular, we are able to study both V' (t)—V'(e)

the fine structure of local characteristics of the spectrum in Bn(s)=2cnf du()————Pa(OPn-1(D).

different scaling limits and smoothed global spectral correla- (12)

tions. Our treatment is based on the direct reconstruction of

spectral correlations from the recurrence equation for th&hen, by using Egs(9) and (10), one obtains after some

corresponding orthogonal polynomials. algebra that the fictitious wave functias), given by Eq.(7)

satisfies the following differential equation:

=An(e)Pr_1—Bn(e)Py, (10

VI()-V'(e) ,

An(S)IZCnf du(t) Pat), (1D

t—e

Il. GENERAL RELATIONS

d?en(e) dey,
:8(28 —fn(s)%s)wn(s)%(s):o. (13

In this section we briefly review the orthogonal polyno-
mial technique[8]. The n-point correlation function, which
describes the probability density to findevels around each
of the pointseq, . .. &, when the positions of the remaining
levels are unobserved, is defined by the formula 1

Here,

(14
!

N o N
Ru(e1, .. .,&p)= Wfim P({s})kzllrl dey. (4)

and
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dB, ¢, dv 1 dA, n=N>1, one must distinguish between coefficienfs. 5,
On(e)= 7=+ ——AAq_1—By| Byt 22—+ = — ~cy and coefficientEy_ ;- ,q~Cn_1, belonging to two dif-
de ch_1 de A, de At q :
ferent smooth(in index subsequences; here, integar
d2v [(dV\? 1 dA,dV ~0O(NY). Bearing this in mind, the largl-version of recur-
+—— ] = — = . i i
4o ( d 8) A de de (15  rence equatiori9) can be rewritten as

g2—(c3+c3_1)1Pn(e)=cnCn_1[Pn_1(€)+ Pnia(e)],
Equation(13) is valid for arbitraryn. We note that despite [ (Gt Ev-2) JPn(e) = Cnn-al Pr-ale) + Prsal ()%9)

the generality of the differential equation obtained, its prac-

tical use is quite restricted since the functiaAg(A) and  from which we get the following asymptotic identities:

Gn(\) entering Eq(13) can be calculated explicitly only for K K
CNCN-1 (k)
c2+cg_,) =0 \]

rather simple measuredu. Nevertheless, an asymptotic A
k
X P 4j-2k(€) (20

A
2\ _ (A2 2 N
analysis of this equation is available in the limit=N>1, e Pn(e)=(cyt+en-1) kzo (
which is of great interest in random matrix theory.

A. Single-band phase

and
The single-band phase corresponds to monotonic confine-
ment potentials or to those having light local extrema. Cor- LAY Kk /K
; ; ; : 2a+1 2,42 A\ CNCN-1
responding asymptotic analysis has been carried out by the Pn(e)=(cytcCrnoy) E 2oz | .
authors in Refs[23,24). For further comparison with a two- k=0 CnteN-1/ 1=01)

band-phase solution, we give a differential equation for X[Crr_ 1Prpsa (2)
o\ (¢) obtained in the leading order IN>1 [upper index N-1TN+aj— 2k 1
indicates that the single-band phase is considered +CnPraj2k-1(8)] (21

2e((e) [ d avl(e) | |de((e) with integerA=0.
a2 |de n > 5 de Expansions Eqs20) and (21) make it possible to com-
€ \ N_S

pute the required functiongy and Gy entering the differen-
tial equation(13) for fictitious wave functions in the limit

(21120 (D( ) —
Tlmvp(e)] en (2)=0. 16 Ns1. Substituting the explicit form of the confinement po-

It is remarkable that Eq16) does not contain the confine- €Ntial set by Eq(2) into Egs.(11) and(12), we obtain
ment potential explicitly, but only involves the Dyson den- p 2k—1
sity AN(S)zchkZ1 dk)zl s*—lf du(t)P(t)t2 -1

o) 2 (Pn_tdt dv [1-£2D?, 0 (22)

14 E)=— —— e ——— —

° w2 Jo t2—¢2 dt N 1-t%DZ and
corresponding to the single-band phase and analytically con- p o 2k1 -
tinued on the entire real axi) is the soft edge of the BN(S):ZCNKZ:L dk}\Zl €
spectrum, being the positive root of the integral equation - -

Dy dV  tdt 7N Xf du(t)Py(H)Py_y (DM (23
) @ 2 (9

respectively. Both integrals above can be calculated using

It has been shown that for a nonsingular confinement poterXPansions Eqs.20), (21), and exploiting the orthogonality

tial, solutions of Eq(16) lead to the universal sine kernel in €xpressed by Ed8). Detailed calculations, given in Appen-

the bulk scaling limit, and to the so-callé@-multicritical ~ dixes A and B, lead to the following results:

correlations in the soft-edge scaling lii#4] . An additional

logarithmic singularity of confinement potential introduces A(e)= E Di—(—1)NDLIP D,jd_V dt

additional terms into Eq(16), giving rise to the universal n(8)= 77[ N N py dt {2_ 2
. . L . . N &

Bessel correlations in the origin scaling linji25,23. For

further progress in the field, see the very recent papér. t2
X : (24)
B. Two-band phase V(D)2 - t[2—(Dy)?]
Let us consider the situation when the confinement poten- 5 N
tial has two deep wells leading to the Dyson density SUD'BN(8)= ESPJDE d_V "~ (~1)"DyDy dt
ported on two disjoint intervals located symmetrically about m Jpy dt [(DF)2—t?][t2— (Dy)?] t?—&?

the origin, Dy <|e|<Dy; . In this situation, the recurrence
coefficientsc, entering Eq.(9) are known to be double- dv

valued functions of the number[1,10]. This means that for S de” (25
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Having obtained the explicit expressions for functidgg  behaved function that can be taken approximately as a con-
andBy, it is easy to verify that coefficient, (¢) andg,(e) stant on the scale of a few eigenlevels. Then, in the vicinity
entering the differential equatidi3) for the fictitious wave of someeg that is chosen to be far enough from the spectrum
function (pg”)(s) may be expressed in terms of the Dysonend points* Dy , Eq. (29) takes the form
density »4” in the two-cut phase supported on two discon-
nected intervalg e (— Dy ,—Dy)U (DN, Dy) d2eN(e)

—— [ @A (s0) Pl (8) =0, (32
de

2
() _ \2_ .2 2__ —\2
vo ) 772|8| VD™= e (D)) with A(eo)=1/v8" (o) being the mean level spacing in the
vicinity of g,. Clearly, the universal sine law for the two-
py . dV/dt 1 point kernel, Eq(6), follows immediately.
XPJD, dt 2 2 2 2 — (i) Eigenvalue correlations near the end points of an ei-
UL \/[(DN) — I =(Dy)7] genvalue support are determined by the Dyson density as
(26)  well. Noting that in the vicinity ofle| =Dy the Dyson den-
sity can be represented in the fof@i7,24]

2 m+1/2
o R (i 33
T op)? "\ o5’

N
whereRy(£1)#0 andm is the order of multicriticality, we
readily recover the universal multicritical correlations previ-
le|V[(DR)?—&2][2— (Dy)?] ously found[24] in the soft-edge scaling limit for the 1)
invariant matrix model in the single-band phase.

whenN>1. Namely, Egs(14), (15), (24), and(25) yield

71'|<9|V§3”)(8) VSI)(S):

, (@27
V(DY) - e2][2—(Dy)?]

d
Fu(e)=g-In (

mvi)(e)

On(e)=[mv (e)]2+

X[e2+(—1)NDy DY . (29
In the largeN limit, the second term in Eq(28) can be V. SMOOTHED CONNECTED "DENSITY-DENSITY”

neglected provided belongs to the one of allowed bands, so CORRELATOR

that o (¢) satisfies the following asymptotic differential  Let us turn to the study of the connected “density-
equation in the two-cut phase: density” correlator that is expressed in terms of the two-
point kernel, Eq(6), as follows:

o)
2
de? (orn(e)omte == —— S lek(eNetr(e)

{d | mle|vp(s) deq(e) reR e e (o)
—|—1n enle ) en-1te

de D+ 2_ .2 2_ N 2 de

\/[( R —2¢n(e)en-1(e)en(e ) on-1(e")},

+[7TV|(3”)(8)]ZQD§\:|)(8):0. (29

(39

We recall thatDy and Dy, are the end points of the eigen-

_ i wheree # &', and the upper index (Il) iy has been omit-
value support that obey the two integral equations er e PP (1) iy

ted for brevity. We still deal with the two-band phase. Equa-
d 24 tion (34) contains rapid oscillations on the scale of the mean
JD; _V tat _ 7N (30) level spacing. These oscillations are due to the presence in
' Eq. (34) of oscillating wave functiongy and ¢y_ 1.
To average over the rapid oscillations, we integrate, over
qv dt the entire real axis, rapidly varying wave functions in Eq.
f oy 9V -0 31) (34) multiplied by an arbitrary, smooth, slowly varying func-
Dy dt \/[(Dﬁ)z—tz][tz—(Dg)z] ' tion. To illustrate the idea, consider the integral

P U \[(DYP =Bl (D7) 2

obtained in Appendix C. One can verify that B tends to = f”’d 20.0f 35
zero, we recover Eq16) valid in the single-band regime. ) sen(e)e), 39
IV. LOCAL EIGENVALUE CORRELATIONS where f(e) is an arbitrary slowly varying function that
. . . should be chosen to be even due to the evenness@f).
Eigenvalue correlations in the spectra of two-band ranSetting

dom matrices are completely determined by the Dyson den-

sity of states entering the effective ScHirger equation o

9. f(e)= 2 f.e%, (36)

(i) In the spectrum bulk, the Dyson density is a well- a=0
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we immediately obtain with the help of Eq&1) and (A6)
that

- 2 (pt ef(e)de
If: 2 faAZa:_J’ ,N T2 > > — "
a=o0 7)oy NI(Dy)?—8%][8°— (Dy)?]
(37)
Bearing in mind that bott(¢) and q{f,(s) are even func-
tions, the last integral can be transformed as follows:

= f “de P3(e)f(e)

—o0

1 le|f(e)de

RN N P RO 9
from which we conclude that in the largédimit,
5 1 le]
e o= e2Ie>= Dy
X0(Dy —e))O(le] = Dy). (39

E. KANZIEPER AND V. FREILIKHER

lg= 2 9ol 2041
a=0

_ 2 fpgg(e)[sz—(—l)NDNDmdg
W[Dﬁ—(—l)N’Dﬁ] Dy \/[(ID;\])Z_SZ][SZ—('DQ)Z].
(42

Exploiting the oddness ofj(e) and ¢pn(g) on_1(g), we
write Eqg.(42) in the form

o= [ deenteron s(eroe)

1

7D — (= 1)NDy ]/ Pu<lel<Dy

g(e)[e?—(—HNDy DY Isgrie)

X (43
V(DY) 2~ e2][2— (D )2]

The same procedure should be carried out with expressiofduation(43) leads us to the conclusion that in the laige-

on(e) en—1(g) in Eq. (34). Since this construction is an od
function of &, we have to consider the integral

= [ deeneron sergte). @0

with

9(e)= 2 gue"! (41)

d imit,

QDN(8)<PN—1(8)
sgrie) e2—(—1)NDyDy
7D}~ (- DNDY ] VI(DR)? - e2][°— (D))

X0 (Dy—le))O(|e|-Dy).

(44

Combining Egs(34), (39), (44), and(C7), we finally ar-

being a smooth odd function. It is easy to see with the helpive at the following formula for the smoothed *“density-

of Egs.(B1), (B5), and(C7) that

density” correlator:

sgnee’) N _ N _
<5VN(8)6VN(8,)>II:_ T(B(DN_|8|)®(|8|_DN)@(DN_|8'|)®(|8’|_DN)
1 [ee’ —(Dy)?I[(DY)?—e&']

X
(e—e")? \J[(DY)?—

+(=DN

e2][e?— (DY)?INI(D{)?—&"2][e'2—(Dy)?]

DyDy
(45)

VL(DR)2—2][2— (D) V(D)2 —e'21[e'2—(Dy)?])

The same formula can be obtained by WKB by solving Eqg.function in random matrix theory. It is universal in the sense

(29), using definition Eq.(34) followed by averaging over
rapid oscillations. It can be verified that fod even, this
result coincides with Eq(6.6) of Ref. [19], where it was

that the information of the distribution Edl) is encoded
into the “density-density” correlator only through the end
pointsDy, of the eigenvalue support. A striking feature of the

obtained by a completely different method, and for the cas@ew universal function Eq45) is its sharp dependence on

of odd N being omitted.
It is seen from Eq.(45) that the smoothed ‘“density-

the oddness or evenness of the dimendibof the random
matrices whose spectra apeunded The origin of this un-

density” correlator in the two-band phase is a new universalisual largeN behavior will be discussed in the next section.
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Finally, let us speculate about the universal correlator Eq. Let us, however, point out that no such sensitivity has
(45) in the limit of unboundedspectrum, Dy —«, with a  been detected in a number of previous studi3,14 ex-
gap. Inasmuch as it describes correlations between the eigeploiting a loop-equation technique. This is due to the follow-

levels that are repelled from each other in accordance witing reasons. In the method of loop equations, used for a
the logarithmic law, which is known to be realizg2B,29in  treatment of non-Gaussian random matrix ensembles fallen

the weakly disordered systems on the energy skates’| in a multiband phase, one is forced to keep the most general
<E, (E. is the Thouless energywe mayconjecturethat the  (nonsymmetri¢ confinement potentiaV(s) =22 ,d,e*/k
corresponding limiting universal expression until the very end of the calculations, leading to a necessity
to take the thermodynamic lim\Xl—oo prior to any others.
lim (Svn(e)dvn(e’))y Therefore,Z2 symmetry in this calculational scheme can
DY —+o0 only be implemented by restoring2 symmetry at the final
stage of the calculations, setting all the extra coupling con-
_ sgriee’) ge’ —A? stantsd,, ., to zero. Doing so, one arrives at the results
T o 2. .2 2 A2 2 A2 reported in Refs[13,14].
2mi(e=e)* V[e"= Ao Al From this point of view, the formalism developed in this
X0O(le|-A)O(le’'|—A) (46)  paper corresponds to thepposite sequencef thermody-

namic andZ2-symmetry limits, since we have considered
reflects the universal properties of real chaotic systems witthe random matrix model that posses&@ssymmetry from
a forbidden gap\ =Dy and broken time reversal symmetry, the beginning. Qualitatively different largé-behavior of the
provided|e —&'|<E,. In two limiting situations(i) of gap- ~ Smoothed connected “density-density” correlator, £4F),
less spectrumA =0, and(ii) far from the gap|e|,|e’|>A, a_nd of the smoothed connected two- pqlnt Grgen s function
the correlator Eq(46) coincides with that known in the ran- given by Eq.(15) of Ref.[14] provides direct evidence that
dom matrix theory of gapless ensembj&6,17 and derived the order of thermodynamic and2-symmetry limits is in-
in Ref. [28] within the framework of a diagrammatic tech- deed important when studying global spectral characteristics
nique for the spectrum of an electron in a random impurityof multiband random matrices.
potential.
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the computation of both global and local spectral character=
istics of U(N) invariant ensembles of large random matrices
possessing2 symmetry, and deformed in such a way that APPENDIX A: CALCULATION OF THE FUNCTION
their spectra contain a forbidden gap. We proved that in the An(e)

pure two-band phase, the local eigenvalue correlations are
insensitive to this deformation both in the bulk and soft-edge
scaling limits. In contrast, global smoothed eigenvalue cor-
relations in the two-band phase differ drastically from those AZ(,:J du(t)PE(1)t2” (A1)
in the single-band phase, and generically satisfy a new uni-

versal law, Eq(45), which is unusually sensitive to the odd-
ness or evenness of the random matrix dimension if the spe
trum support isoounded On the formal level, this sensitivity
is a direct consequence of the “period-two” behaviiar10] -
of the recurrence coefficients, [see Eq(9)] that is charac- Agy=(cB+c3_ 1)02 ( )

Let us consider an integral

g\nth integero=0. Making use of Eq(20), we rewrite A,
in the form

teristic of the two-band phase of the reduced Hermitian ma- k=0

trix model. To see this, consider the simplest connected cor- K K

relator(TrHTrH), that can beexactlyrepresented in terms of CONCN-1 2 J'd P (1)P ¢

recurrence coefficients for any, c2+c3 ) % H(O PP —2k().
(TrHTH) = c2. 47 (A2)

Orthogonality of theP, allows us to integrate over the mea-
Since in the two-band phasg is a double-valued function suredy, thus 5|mp||fy|ng Eq.A2):

of index n, alternating between two different functions ras
goes from odd to even, the lardedimit of the correlator T o\ [ eac k k

(TrHTrH), strongly depends on whether infinity is ap- A, =(c3+c3 )" ( ) NEN—L ) > ( ) 55,
proached through odd or evé\i Then, an implementation k=0 \ k CN+CN 1) i=0

of a double-valued behavior af, into the higher order cor- (A3)
relators of the form(TrH*TrH'). contributing to the con-

nected “density-density” correlator gives rise to the newwheredy, is the Kronecker symbol. Using the integral rep-
universal expression E@45). resentation
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5 =R fzwda i(k—K’ A4
o =Re| 5 explitk=k")e}, (A%)
one can perform the double summation in E43):

2ndl
AZU:f E(CN+CN_1+ 2CNCN—1 CO0S 0)0 (AS)
0

Introducing a new integration variablé?=cZ+c3_;
+2cyCn—1 COSH, we derive an integral formula

2 D+ t20’+1dt
A2(r:_ _N (A6)
™oy \[(DF) 2]t~ (Dy)?]
with
'D§=|CNiCN,1|. (A?)

Now, taking into account representation EH#\6) for
A5, , and using the fact that,,, ;=0, we obtain from Eq.
(22)

p k
AN(S):ZCNKZ:L dkgl Az(k_o.)&‘zv_z. (AS)
Summing overo yields
4c P +
An(e)=—> dka,“ dt
T k=1 DN
t t2k_82k
X , (A9)
V(DR 2= ][22 (Dy)?] tP—e?
from which we get, with the help of Ed2),
4cy (pf dt t
An(e)=—]| " T2 2.2 —2112_ .2
™ Joy JI(DY)? - I[P = (Dy)?] P~
dv dVv AL0
X tH—SE . ( )
Further, noting that
dt t
=0, (All)

D+
p|
P VLD I3 (Dy)?] =62
and taking into account EqC7), leads to the final expres-
sion given by Eq(24).
APPENDIX B: CALCULATION OF THE FUNCTION By(#)

Let us consider an integral

Fzg+1:f du(H)PN(t) Py o (2771 (B1)

with integer c=0. Making use of expansion Eq21), we
rewrite Eq.(B1) in the form that allows us to perform the
integration over the measudy:

E. KANZIEPER AND V. FREILIKHER

1 ° o
F2(,+1=§<cﬁ+cﬁ,1><’f du(O)Py-a(D) 2, ( k)

K k
(Cg\fsﬁ__ll) JZO j)[CN—1PN+4j—2k+1(t)
+CnPryaj-2k-1(D) ] (B2
After integration, we get
- K k
ramgeiinrS, () gt 3]
X[CN—15§j+1+CN6§j]' (B3)

The double summation in E¢B3) can be performed using
the integral representation for the Kronecker symbol given
by Eq.(A4):

1(2md6 , o
F21r+l:§ . Z(CN+CN71+ZCNCN71 cos 6)
X[cytCnoq COSA]. (B4)

Introducing a new integration variabld?=cZ+c3_,
+2cnCh-1 COSH, we get

1 fD; t2¢7+1dt
7CnJ oy V(D)2 —t2][t2—(Dy)?]

| PWITES

X[t2+c3—c_,]. (B5)
Then, Egs(23), (B1), and(B5) yield
5 P ko1
Bu(e)=— 2 di X Tacze15® " (BO)

Summing ovefo leads to the integral expression

2, .2 2
[t*+cN—cN-1]

By(e) 2 i d fD+d
= Ndt
O &M o= ele= (D)7

et2k—1_tg2k-1

X
t2—82
_2(m dt
Ty (D)2 t2)[t2— (Dy)?]
t?+ci—c3_,/ dv dV
X—————| e——t—]. (B7)
2 g2 dt  de

Now, taking into account Eq$A11) and(C6), we obtain Eq.
(25).
APPENDIX C: SOFT EDGES OF EIGENVALUE SUPPORT

To find the equations determining the poirlegy where
the Dyson spectral density goes to zero, we start with the
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following formula from the theory of orthogonal polynomi- 2 (o dt av
a.lS [30] N=— _N _[t2+cﬁ71_0’%‘]'
dv ™20 VL(Dg)* - [ (Dy)?) 4t
n=2c, f dus(t) 5 Pa(t)Pp1(D): (&) €4
) ) Equations(C3) and (C4) yield two equations whose solu-
Let us use expansion E(R1) to calculate asymptotically the tions determine the edge poirtx; :
integral entering Eq(C1) in the limitn=N>1. It is easy to
see that

D t2dt dv aN
d Jar To—vee-mpr a2
N=2cy >, d)\f du(t) Pr(t)Py_q ()t 1 " N N
A=1
and
p
:ZCN)\Z]_ d)\Fz)\,l, (CZ) o dt dv
f N ————=0. (CH
whereT',, _; is given by Eq.(B5). Then, we immediately oy (DY) 2—t2][ 12— (Dy)?]

obtain the relationship
Finally, we note that becauge_;(&)=0, it follows from

2 D}, dt dv s 2 2 Eq. (9) thatcy=0, and as a consequence, an even brapgh
N=—[" — — E[t +en—cn-al always lies lower than an odd branchy.q, SO thatc,y
™oy (D)2 -2~ (Dy)?] ©3 <C,n=+1. Then, we may conclude from EGA7) that
This result, rewritten fom=N-—1, yields in the largeN _Dﬁ_(_l)NDN
. CN= . (C7
limit 2
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