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Two-band random matrices
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Spectral correlations in unitary invariant, non-Gaussian ensembles of large random matrices possessing an
eigenvalue gap are studied within the framework of the orthogonal polynomial technique. Both local and
global characteristics of spectra are directly reconstructed from the recurrence equation for orthogonal poly-
nomials associated with a given random matrix ensemble. It is established that an eigenvalue gap does not
affect the local eigenvalue correlations that follow the universal sine and the universal multicritical laws in the
bulk and soft-edge scaling limits, respectively. By contrast, global smoothed eigenvalue correlations do reflect
the presence of a gap, and are shown to satisfy a new universal law exhibiting a sharp dependence on the odd
or even dimension of random matrices whose spectra are bounded. In the case of an unbounded spectrum, the
corresponding universal ‘‘density-density’’ correlator is conjectured to be generic for chaotic systems with a
forbidden gap and broken time reversal symmetry.@S1063-651X~98!04206-8#

PACS number~s!: 05.45.1b, 02.10.Sp, 05.40.1j
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I. INTRODUCTION

Ensembles of large random matricesH generated by the
joint distribution functionP@H#} exp$2b Tr V@H#%, with
b being a symmetry parameter as explained below, may
play phase transitions under nonmonotonic deformation
the confinement potentialV@H#. Different phases are charac
terized by topologically different arrangements of eigenv
ues in random matrix spectra that may have multiple-b
structure. Random matrices, whose spectra undergo p
transitions, appear in quantizing two-dimensional gravity@1–
3#, in the context of quantum chromodynamics@4,5#, as well
as in some models of particles interacting in high dimensi
@6#. Transition regimes realized in invariant random mat
ensembles have implications for a certain class of Calog
Sutherland-Moser models@7#. These matrix models may als
be applicable to chaotic systems having a forbidden ga
the energy spectrum.

In the eigenvalue representation, the invariant rand
matrix model is defined by the joint probability distributio
function @8#

P~$«%!5ZN
21 )

i . j 51

N

u« i2« j ub)
k51

N

exp $2bV~«k!% ~1!

of N eigenvalues$«%5$«1 , . . . ,«N% of an N3N random
matrix H. The symmetry parameterb coincides with a num-
ber of independent elements in off-diagonal entries of a r
dom matrixH. For real symmetric matrices,b51 ~orthogo-
nal symmetry!, b52 for Hermitian matrices ~unitary
symmetry!, andb54 for self-dual Hermitian matrices~sym-
plectic symmetry!. It is convenient to parametrize the co
finement potentialV(«) entering Eq.~1! by a set of coupling
constants$d%5$d1 , . . . ,dp%,
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Trieste, Italy.
571063-651X/98/57~6!/6604~8!/$15.00
s-
f

-
d
se

s

o-

in

m

-

V~«!5 (
k51

p
dk

2k
«2k, dp.0, ~2!

so that we may consider the phase transitions as occurrin
$d% space. Because the confinement potential is an e
function, the associated random matrix model possesses
calledZ2 symmetry.

Variations of the coupling constants affect the Dyson d
sity nD , that can be found by minimizing the free energ
FN52 lnZN , Eq. ~1!, subject to a normalization constrain
*nD(«)d«5N,

dV

d«
2PE dz

nD~z!

«2z
50, ~3!

where P indicates a principal value of the integral. When
dk are positive, so that the confinement potential is mo
tonic, the spectral densitynD has a single-band support,Nb
51. Nonmonotonic deformation of the confinement pote
tial can be carried out by changing the signs of some ofdk
(kÞp). Such acontinuousvariation of coupling constants
may lead, under certain conditions, to adiscontinuous
change of the topological structure of spectral densitynD ,
when the eigenvalues$«% are arranged inNb.1 ‘‘allowed’’
bands separated by ‘‘forbidden’’ gaps.

The phase structure of the Hermitian (b52) one-matrix
model Eq.~1! has been studied in a number of works@9–12#,
where the simplest examples of nonmonotonic quartic
sextic confinement potentials have been examined. It
been found that there are domains in the phase spac
coupling constants where only a particular solution fornD
exists, and it has a fixed numberNb of allowed bands. How-
ever, in some regions of the phase space, one can have
than one kind of solution of the saddle-point equation~3!. In
this situation, solutions with a different number of ban
Nb

(1) , Nb
(2) , . . . are present simultaneously. When such

overlap appears, one of the solutions, sayNb
(k) , has the low-

est free energyFN
(k) , and this solution is dominant, while th

others are subdominant. Moreover, numerical calculati
@12# showed that some special regimes exist in which
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57 6605TWO-BAND RANDOM MATRICES
bulk spectral density obtained as a solution to the sad
point equation~3! differs significantly from the genuine leve
density computed numerically within the framework of t
orthogonal polynomial technique. It was then argued t
such a genuine density of levels cannot be interpreted
multiband solution with an integer number of bands. A f
understanding of this phenomenon is still absent.

Recently, interest was renewed in multiband regimes
invariant random matrix ensembles. An analysis based o
loop equation technique@13,14# showed that fingerprints o
phase transitions appear not only in the Dyson density
also in the ~universal! wide-range eigenvalue correlator
which in the multiband phases differ from those known
the single-band phase@15–17#. A renormalization-group ap
proach developed in Ref.@18# supported the results found i
Refs. @13,14# for the particular case of two allowed band
referring a new type of universal wide-range eigenlevel c
relators to an additional attractive fixed point of a renorm
ization group transformation.

The method of loop equations@13,14#, used for a treat-
ment of non-Gaussian, unitary invariant, random matrix
sembles fallen in a multiband phase, is only suitable for co
puting the global characteristics of spectrum. Therefore,
appropriate approach is needed that is capable of analy
local characteristics of the spectrum~manifested on the scal
of a few eigenlevels!. A possibility to probe the local prop
erties of the eigenspectrum is offered by the method of
thogonal polynomials. A step in this direction was taken in
recent paper@19#, where an ansatz was proposed for largeN
asymptotes of orthogonal polynomials associated with a
dom matrix ensemble having two allowed bands in its sp
trum. Because the asymptotic formula proposed there i
the Plancherel-Rotach type@20#, it is only applicable for
studying eigenvalue correlations in the spectrum bulk a
cannot be used for studying local correlations in an arbitr
spectrum range~for example, near the edges of two-ba
eigenvalue support!.

The aim of the present paper is to develop a new appro
~within an orthogonal polynomial scheme! that allows for a
unified treatment of eigenlevel correlations in the unitary
variant U(N) matrix model (b52) with a forbidden gap.
This is a further extension of the Shohat method@21,22# that
has been used previously by the authors to study U(N) in-
variant ensembles of large random matrices in the sin
band phase@23,24#. In particular, we are able to study bo
the fine structure of local characteristics of the spectrum
different scaling limits and smoothed global spectral corre
tions. Our treatment is based on the direct reconstructio
spectral correlations from the recurrence equation for
corresponding orthogonal polynomials.

II. GENERAL RELATIONS

In this section we briefly review the orthogonal polyn
mial technique@8#. The n-point correlation function, which
describes the probability density to findn levels around each
of the points«1 , . . . ,«n when the positions of the remainin
levels are unobserved, is defined by the formula

Rn~«1 , . . . ,«n!5
N!

~N2n!! E2`

1`

P~$«%! )
k5n11

N

d«k . ~4!
e-
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This correlation function can explicitly be expressed in ter
of the two-point kernelKN(«,«8) as follows:

Rn~«1 , . . . ,«n!5detiKN~« i ,« j !i i , j 51, . . . ,n . ~5!

Here,

KN~«,«8!5cN

wN~«8!wN21~«!2wN~«!wN21~«8!

«82«
, ~6!

and the ‘‘eigenfunctions’’

wn~«!5Pn~«! exp $2V~«!% ~7!

are determined by the set of polynomials orthogonal w
respect to the measuredm(«)5exp$22V(«)%d«,

E
2`

1`

dm~«!Pn~«!Pm~«!5dnm , ~8!

and obeying the recurrence equation

«Pn21~«!5cnPn~«!1cn21Pn22~«!. ~9!

The recurrence coefficientscn entering Eqs.~6! and ~9! are
uniquely determined by the measuredm. Equations~5! and
~6! demonstrate that the problem of eigenvalue correlati
is reduced to that of finding asymptotes for the eigenfu
tions wN .

III. MAPPING RECURRENCE EQUATION
ONTO DIFFERENTIAL EQUATION

To map a recurrence Eq.~9! onto a second-order differ
ential equation for eigenfunctionswn , we note that the first
derivativedPn /d« can be represented as@21,22#

dPn

d«
5An~«!Pn212Bn~«!Pn , ~10!

where

An~«!52cnE dm~ t !
V8~ t !2V8~«!

t2«
Pn

2~ t !, ~11!

Bn~«!52cnE dm~ t !
V8~ t !2V8~«!

t2«
Pn~ t !Pn21~ t !.

~12!

Then, by using Eqs.~9! and ~10!, one obtains after some
algebra that the fictitious wave functionwn given by Eq.~7!
satisfies the following differential equation:

d2wn~«!

d«2
2Fn~«!

dwn~«!

d«
1Gn~«!wn~«!50. ~13!

Here,

Fn~«!5
1

An

dAn

d«
~14!

and
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Gn~«!5
dBn

d«
1

cn

cn21
AnAn212BnS Bn12

dV

d«
1

1

An

dAn

d« D
1

d2V

d«2
2S dV

d« D 2

2
1

An

dAn

d«

dV

d«
. ~15!

Equation~13! is valid for arbitraryn. We note that despite
the generality of the differential equation obtained, its pr
tical use is quite restricted since the functionsFn(l) and
Gn(l) entering Eq.~13! can be calculated explicitly only fo
rather simple measuresdm. Nevertheless, an asymptot
analysis of this equation is available in the limitn5N@1,
which is of great interest in random matrix theory.

A. Single-band phase

The single-band phase corresponds to monotonic con
ment potentials or to those having light local extrema. C
responding asymptotic analysis has been carried out by
authors in Refs.@23,24#. For further comparison with a two
band-phase solution, we give a differential equation
wN

(I) («) obtained in the leading order inN@1 @upper index
indicates that the single-band phase is considered#:

d2wN
~ I!~«!

d«2
2F d

d«
ln S pnD

~ I!~«!

ADN
2 2«2D GdwN

~ I!~«!

d«

1@pnD
~ I!~«!#2wN

~ I!~«!50. ~16!

It is remarkable that Eq.~16! does not contain the confine
ment potential explicitly, but only involves the Dyson de
sity

nD
~ I!~«!5

2

p2
PE

0

DN t dt

t22«2

dV

dt
A12«2/DN

2

12t2/DN
2

~17!

corresponding to the single-band phase and analytically c
tinued on the entire real axis;DN is the soft edge of the
spectrum, being the positive root of the integral equation

E
0

DN dV

dt

t dt

ADN
2 2t2

5
pN

2
. ~18!

It has been shown that for a nonsingular confinement po
tial, solutions of Eq.~16! lead to the universal sine kernel i
the bulk scaling limit, and to the so-calledG-multicritical
correlations in the soft-edge scaling limit@24# . An additional
logarithmic singularity of confinement potential introduc
additional terms into Eq.~16!, giving rise to the universa
Bessel correlations in the origin scaling limit@25,23#. For
further progress in the field, see the very recent paper@26#.

B. Two-band phase

Let us consider the situation when the confinement po
tial has two deep wells leading to the Dyson density s
ported on two disjoint intervals located symmetrically abo
the origin,DN

2,u«u,DN
1 . In this situation, the recurrenc

coefficientscn entering Eq.~9! are known to be double
valued functions of the numbern @1,10#. This means that for
-

e-
-
he

r

n-

n-

n-
-
t

n5N@1, one must distinguish between coefficientscN62q
'cN and coefficientscN2162q'cN21, belonging to two dif-
ferent smooth~in index! subsequences; here, integerq
;O(N0). Bearing this in mind, the large-N version of recur-
rence equation~9! can be rewritten as

@«22~cN
2 1cN21

2 !#PN~«!5cNcN21@PN21~«!1PN11~«!#,
~19!

from which we get the following asymptotic identities:

«2lPN~«!5~cN
2 1cN21

2 !l(
k50

l S l

k D S cNcN21

cN
2 1cN21

2 D k

(
j 50

k S k

j D
3PN14 j 22k~«! ~20!

and

«2l11PN~«!5~cN
2 1cN21

2 !l(
k50

l S l

k D S cNcN21

cN
2 1cN21

2 D k

(
j 50

k S k

j D
3@cN21PN14 j 22k11~«!

1cNPN14 j 22k21~«!# ~21!

with integerl>0.
Expansions Eqs.~20! and ~21! make it possible to com-

pute the required functionsFN andGN entering the differen-
tial equation~13! for fictitious wave functions in the limit
N@1. Substituting the explicit form of the confinement p
tential set by Eq.~2! into Eqs.~11! and ~12!, we obtain

AN~«!52cN(
k51

p

dk (
l51

2k21

«l21E dm~ t !PN
2 ~ t !t2k2l21

~22!

and

BN~«!52cN(
k51

p

dk (
l51

2k21

«l21

3E dm~ t !PN~ t !PN21~ t !t2k2l21, ~23!

respectively. Both integrals above can be calculated us
expansions Eqs.~ 20!, ~21!, and exploiting the orthogonality
expressed by Eq.~8!. Detailed calculations, given in Appen
dixes A and B, lead to the following results:

AN~«!5
2

p
@DN

12~21!NDN
2#PE

DN
2

DN
1dV

dt

dt

t22«2

3
t2

A@~DN
1!22t2#@ t22~DN

2!2#
, ~24!

BN~«!5
2

p
«PE

DN
2

DN
1 dV

dt

t22~21!NDN
2DN

1

A@~DN
1!22t2#@ t22~DN

2!2#

dt

t22«2

2
dV

d«
. ~25!
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Having obtained the explicit expressions for functionsAN
andBN , it is easy to verify that coefficientsFn(«) andGn(«)
entering the differential equation~13! for the fictitious wave
function wn

(II) («) may be expressed in terms of the Dys
densitynD

(II) in the two-cut phase supported on two disco
nected intervals«P(2DN

1 ,2DN
2)ø(DN

2 ,DN
1) ,

nD
~ II !~«!5

2

p2
u«uA@~DN

1!22«2#@«22~DN
2!2#

3PE
DN

2

DN
1

dt
dV/dt

t22«2

1

A@~DN
1!22t2#@ t22~DN

2!2#

~26!

whenN@1. Namely, Eqs.~14!, ~15!, ~24!, and~25! yield

FN~«!5
d

d«
ln S pu«unD

~ II !~«!

A@~DN
1!22«2#@«22~DN

2!2#
D , ~27!

GN~«!5@pnD
~ II !~«!#21

pnD
~ II !~«!

u«uA@~DN
1!22«2#@«22~DN

2!2#

3@«21~21!NDN
2DN

1#. ~28!

In the large-N limit, the second term in Eq.~28! can be
neglected provided« belongs to the one of allowed bands,
that wN

(II) («) satisfies the following asymptotic differentia
equation in the two-cut phase:

d2wN
~ II !~«!

d«2

2F d

d«
ln S pu«unD

~ II !~«!

A@~DN
1!22«2#@«22~DN

2!2#
D GdwN

~ II !~«!

d«

1@pnD
~ II !~«!#2wN

~ II !~«!50. ~29!

We recall thatDN
2 andDN

1 are the end points of the eigen
value support that obey the two integral equations

E
DN

2

DN
1 dV

dt

t2dt

A@~DN
1!22t2#@ t22~DN

2!2#
5

pN

2
, ~30!

E
DN

2

DN
1 dV

dt

dt

A@~DN
1!22t2#@ t22~DN

2!2#
50, ~31!

obtained in Appendix C. One can verify that asDN
2 tends to

zero, we recover Eq.~16! valid in the single-band regime.

IV. LOCAL EIGENVALUE CORRELATIONS

Eigenvalue correlations in the spectra of two-band r
dom matrices are completely determined by the Dyson d
sity of states entering the effective Schro¨dinger equation
~29!.

~i! In the spectrum bulk, the Dyson density is a we
-

-
n-

behaved function that can be taken approximately as a c
stant on the scale of a few eigenlevels. Then, in the vicin
of some«0 that is chosen to be far enough from the spectr
end points6DN

6 , Eq. ~29! takes the form

d2wN
~ II !~«!

d«2
1@p/D~«0!#2wN

~ II !~«!50, ~32!

with D(«0)51/nD
(II) («0) being the mean level spacing in th

vicinity of «0. Clearly, the universal sine law for the two
point kernel, Eq.~6!, follows immediately.

~ii ! Eigenvalue correlations near the end points of an
genvalue support are determined by the Dyson density
well. Noting that in the vicinity ofu«u5DN

6 the Dyson den-
sity can be represented in the form@27,24#

nD
~ II !~«!5F6S 12

«2

~DN
6!2D Gm11/2

RNS «

DN
6D , ~33!

whereRN(61)Þ0 andm is the order of multicriticality, we
readily recover the universal multicritical correlations pre
ously found@24# in the soft-edge scaling limit for the U(N)
invariant matrix model in the single-band phase.

V. SMOOTHED CONNECTED ‘‘DENSITY-DENSITY’’
CORRELATOR

Let us turn to the study of the connected ‘‘densit
density’’ correlator that is expressed in terms of the tw
point kernel, Eq.~6!, as follows:

^dnN~«!dnN~«8!& II52
cN

2

~«2«8!2
$wN

2 ~«!wN21
2 ~«8!

1wN
2 ~«8!wN21

2 ~«!

22wN~«!wN21~«!wN~«8!wN21~«8!%,

~34!

where«Þ«8, and the upper index (II) inwN has been omit-
ted for brevity. We still deal with the two-band phase. Equ
tion ~34! contains rapid oscillations on the scale of the me
level spacing. These oscillations are due to the presenc
Eq. ~34! of oscillating wave functionswN andwN21.

To average over the rapid oscillations, we integrate, o
the entire real axis, rapidly varying wave functions in E
~34! multiplied by an arbitrary, smooth, slowly varying func
tion. To illustrate the idea, consider the integral

I f5E
2`

1`

d«wN
2 ~«!f~«!, ~35!

where f(«) is an arbitrary slowly varying function tha
should be chosen to be even due to the evenness ofwN

2 («).
Setting

f~«!5 (
a50

`

fa«2a, ~36!
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we immediately obtain with the help of Eqs.~A1! and ~A6!
that

I f5 (
a50

`

faL2a5
2

pEDN
2

DN
1 «f~«!d«

A@~DN
1!22«2#@«22~DN

2!2#
.

~37!

Bearing in mind that bothf(«) and wN
2 («) are even func-

tions, the last integral can be transformed as follows:

I f5E
2`

1`

d« wN
2 ~«!f~«!

5
1

pEDN
2

,u«u,DN
1

u«uf~«!d«

A@~DN
1!22«2#@«22~DN

2!2#
, ~38!

from which we conclude that in the large-N limit,

wN
2 ~«!5

1

p

u«u

A@~DN
1!22«2#@«22~DN

2!2#

3Q~DN
12u«u!Q~ u«u2DN

2!. ~39!

The same procedure should be carried out with expres
wN(«)wN21(«) in Eq. ~34!. Since this construction is an od
function of «, we have to consider the integral

I g5E
2`

1`

d« wN~«!wN21~«!g~«!, ~40!

with

g~«!5 (
a50

`

ga«2a11 ~41!

being a smooth odd function. It is easy to see with the h
of Eqs.~B1!, ~B5!, and~C7! that
q

as

-
sa
on

lp

I g5 (
a50

`

gaG2a11

5
2

p@DN
12~21!NDN

2#
E
DN

2

DN
1g~«!@«22~21!NDN

2DN
1#d«

A@~DN
1!22«2#@«22~DN

2!2#
.

~42!

Exploiting the oddness ofg(«) and wN(«)wN21(«), we
write Eq. ~42! in the form

I g5E
2`

1`

d «wN~«!wN21~«!g~«!

5
1

p@DN
12~21!NDN

2#
E
DN

2
,u«u,DN

1
d«

3
g~«!@«22~21!NDN

2DN
1#sgn~«!

A@~DN
1!22«2#@«22~DN

2!2#
. ~43!

Equation~43! leads us to the conclusion that in the largeN
limit,

wN~«!wN21~«!

5
sgn~«!

p@DN
12~21!NDN

2#

«22~21!NDN
2DN

1

A@~DN
1!22«2#@«22~DN

2!2#

3Q~DN
12u«u!Q~ u«u2DN

2!. ~44!

Combining Eqs.~34!, ~39!, ~44!, and~C7!, we finally ar-
rive at the following formula for the smoothed ‘‘density
density’’ correlator:
^dnN~«!dnN~«8!& II52
sgn~««8!

2p2
Q~DN

12u«u!Q~ u«u2DN
2!Q~DN

12u«8u!Q~ u«8u2DN
2!

3H 1

~«2«8!2

@««82~DN
2!2#@~DN

1!22««8#

A@~DN
1!22«2#@«22~DN

2!2#A@~DN
1!22«82#@«822~DN

2!2#

1~21!N
DN

2DN
1

A@~DN
1!22«2#@«22~DN

2!2#A@~DN
1!22«82#@«822~DN

2!2#
J . ~45!
se

d
e

n.
The same formula can be obtained by WKB by solving E
~29!, using definition Eq.~34! followed by averaging over
rapid oscillations. It can be verified that forN even, this
result coincides with Eq.~6.6! of Ref. @19#, where it was
obtained by a completely different method, and for the c
of odd N being omitted.

It is seen from Eq.~45! that the smoothed ‘‘density
density’’ correlator in the two-band phase is a new univer
.

e

l

function in random matrix theory. It is universal in the sen
that the information of the distribution Eq.~1! is encoded
into the ‘‘density-density’’ correlator only through the en
pointsDN

6 of the eigenvalue support. A striking feature of th
new universal function Eq.~45! is its sharp dependence on
the oddness or evenness of the dimensionN of the random
matrices whose spectra arebounded. The origin of this un-
usual large-N behavior will be discussed in the next sectio
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Finally, let us speculate about the universal correlator
~45! in the limit of unboundedspectrum,DN

1→`, with a
gap. Inasmuch as it describes correlations between the e
levels that are repelled from each other in accordance w
the logarithmic law, which is known to be realized@28,29# in
the weakly disordered systems on the energy scaleu«2«8u
!Ec (Ec is the Thouless energy!, we mayconjecturethat the
corresponding limiting universal expression

lim
DN

1→1`

^dnN~«!dnN~«8!& II

52
sgn~««8!

2p2~«2«8!2

««82D2

A@«22D2#@«822D2#

3Q~ u«u2D!Q~ u«8u2D! ~46!

reflects the universal properties of real chaotic systems w
a forbidden gapD5DN

2 and broken time reversal symmetr
providedu«2«8u!Ec . In two limiting situations~i! of gap-
less spectrum,D50, and~ii ! far from the gap,u«u,u«8u@D,
the correlator Eq.~46! coincides with that known in the ran
dom matrix theory of gapless ensembles@16,17# and derived
in Ref. @28# within the framework of a diagrammatic tech
nique for the spectrum of an electron in a random impu
potential.

VI. CONCLUDING REMARKS

In this study we developed a unified formalism allowin
the computation of both global and local spectral charac
istics of U(N) invariant ensembles of large random matric
possessingZ2 symmetry, and deformed in such a way th
their spectra contain a forbidden gap. We proved that in
pure two-band phase, the local eigenvalue correlations
insensitive to this deformation both in the bulk and soft-ed
scaling limits. In contrast, global smoothed eigenvalue c
relations in the two-band phase differ drastically from tho
in the single-band phase, and generically satisfy a new
versal law, Eq.~45!, which is unusually sensitive to the odd
ness or evenness of the random matrix dimension if the s
trum support isbounded. On the formal level, this sensitivity
is a direct consequence of the ‘‘period-two’’ behavior@1,10#
of the recurrence coefficientscn @see Eq.~9!# that is charac-
teristic of the two-band phase of the reduced Hermitian m
trix model. To see this, consider the simplest connected
relator^TrHTrH&c that can beexactlyrepresented in terms o
recurrence coefficients for anyn,

^TrHTrH&c5cn
2 . ~47!

Since in the two-band phasecn is a double-valued function
of index n, alternating between two different functions asn
goes from odd to even, the large-N limit of the correlator
^TrHTrH&c strongly depends on whether infinity is a
proached through odd or evenN. Then, an implementation
of a double-valued behavior ofcn into the higher order cor-
relators of the form^TrHkTrH l&c contributing to the con-
nected ‘‘density-density’’ correlator gives rise to the ne
universal expression Eq.~45!.
.
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Let us, however, point out that no such sensitivity h
been detected in a number of previous studies@13,14# ex-
ploiting a loop-equation technique. This is due to the follo
ing reasons. In the method of loop equations, used fo
treatment of non-Gaussian random matrix ensembles fa
in a multiband phase, one is forced to keep the most gen
~nonsymmetric! confinement potentialV(«)5(k51

2p d̃k«
k/k

until the very end of the calculations, leading to a neces
to take the thermodynamic limitN→` prior to any others.
Therefore,Z2 symmetry in this calculational scheme ca
only be implemented by restoringZ2 symmetry at the final
stage of the calculations, setting all the extra coupling c
stants d̃2k11 to zero. Doing so, one arrives at the resu
reported in Refs.@13,14#.

From this point of view, the formalism developed in th
paper corresponds to theopposite sequenceof thermody-
namic andZ2-symmetry limits, since we have considere
the random matrix model that possessesZ2 symmetry from
the beginning. Qualitatively different large-N behavior of the
smoothed connected ‘‘density-density’’ correlator, Eq.~45!,
and of the smoothed connected two-point Green’s funct
given by Eq.~15! of Ref. @14# provides direct evidence tha
the order of thermodynamic andZ2-symmetry limits is in-
deed important when studying global spectral characteris
of multiband random matrices.
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APPENDIX A: CALCULATION OF THE FUNCTION
AN„«…

Let us consider an integral

L2s5E dm~ t !PN
2 ~ t !t2s ~A1!

with integers>0. Making use of Eq.~20!, we rewriteL2s

in the form

L2s5~cN
2 1cN21

2 !s(
k50

s S s

k D
3S cNcN21

cN
2 1cN21

2 D k

(
j 50

k S k

j D E dm~ t !PN~ t !PN14 j 22k~ t !.

~A2!

Orthogonality of thePn allows us to integrate over the mea
suredm, thus simplifying Eq.~A2!:

L2s5~cN
2 1cN21

2 !s(
k50

s S s

k D S cNcN21

cN
2 1cN21

2 D k

(
j 50

k S k

j D d2 j
k ,

~A3!

wheredk8
k is the Kronecker symbol. Using the integral re

resentation



-
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dk8
k

5ReE
0

2p du

2p
exp $ i ~k2k8!u%, ~A4!

one can perform the double summation in Eq.~A3!:

L2s5E
0

2p du

2p
~cN

2 1cN21
2 12cNcN21 cosu!s. ~A5!

Introducing a new integration variablet25cN
2 1cN21

2

12cNcN21 cosu, we derive an integral formula

L2s5
2

p
E
DN

2

DN
1 t2s11dt

A@~DN
1!22t2#@ t22~DN

2!2#
~A6!

with

DN
65ucN6cN21u. ~A7!

Now, taking into account representation Eq.~A6! for
L2s , and using the fact thatL2s11[0, we obtain from Eq.
~22!

AN~«!52cN(
k51

p

dk (
s51

k

L2~k2s!«
2s22. ~A8!

Summing overs yields

AN~«!5
4cN

p
(
k51

p

dkE
DN

2

DN
1

dt

3
t

A@~DN
1!22t2#@ t22~DN

2!2#

t2k2«2k

t22«2
, ~A9!

from which we get, with the help of Eq.~2!,

AN~«!5
4cN

p E
DN

2

DN
1 dt

A@~DN
1!22t2#@ t22~DN

2!2#

t

t22«2

3S t
dV

dt
2«

dV

d« D . ~A10!

Further, noting that

PE
DN

2

DN
1 dt

A@~DN
1!22t2#@ t22~DN

2!2#

t

t22«2
[0, ~A11!

and taking into account Eq.~C7!, leads to the final expres
sion given by Eq.~24!.

APPENDIX B: CALCULATION OF THE FUNCTION BN„«…

Let us consider an integral

G2s115E dm~ t !PN~ t !PN21~ t !t2s11 ~B1!

with integer s>0. Making use of expansion Eq.~21!, we
rewrite Eq.~B1! in the form that allows us to perform th
integration over the measuredm:
G2s115
1

2
~cN

2 1cN21
2 !sE dm~ t !PN21~ t !(

k50

s S s

k D
3S cNcN21

cN
2 1cN21

2 D k

(
j 50

k S k

j D @cN21PN14 j 22k11~ t !

1cNPN14 j 22k21~ t !#. ~B2!

After integration, we get

G2s115
1

2
~cN

2 1cN21
2 !s(

k50

s S s

k D S cNcN21

cN
2 1cN21

2 D k

(
j 50

k S k

j D
3@cN21d2 j 11

k 1cNd2 j
k #. ~B3!

The double summation in Eq.~B3! can be performed using
the integral representation for the Kronecker symbol giv
by Eq. ~A4!:

G2s115
1

2E0

2p du

2p
~cN

2 1cN21
2 12cNcN21 cosu!s

3@cN1cN21 cosu#. ~B4!

Introducing a new integration variablet25cN
2 1cN21

2

12cNcN21 cosu, we get

G2s115
1

pcN
E
DN

2

DN
1 t2s11dt

A@~DN
1!22t2#@ t22~DN

2!2#

3@ t21cN
2 2cN21

2 #. ~B5!

Then, Eqs.~23!, ~B1!, and~B5! yield

BN~«!5
2

p (
k51

p

dk (
s51

k21

G2k22s21«2s21. ~B6!

Summing overs leads to the integral expression

BN~«!5
2

p
(
k51

p

dkE
DN

2

DN
1

dt
@ t21cN

2 2cN21
2 #

A@~DN
1!22t2#@ t22~DN

2!2#

3
«t2k212t«2k21

t22«2

5
2

p
E
DN

2

DN
1 dt

A@~DN
1!22t2#@ t22~DN

2!2#

3
t21cN

2 2cN21
2

t22«2
S «

dV

dt
2t

dV

d«
D . ~B7!

Now, taking into account Eqs.~A11! and~C6!, we obtain Eq.
~25!.

APPENDIX C: SOFT EDGES OF EIGENVALUE SUPPORT

To find the equations determining the pointsDN
6 where

the Dyson spectral density goes to zero, we start with
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following formula from the theory of orthogonal polynom
als @30#:

n52cnE dm~ t !
dV

dt
Pn~ t !Pn21~ t !. ~C1!

Let us use expansion Eq.~21! to calculate asymptotically the
integral entering Eq.~C1! in the limit n5N@1. It is easy to
see that

N52cN(
l51

p

dlE dm~ t !PN~ t !PN21~ t !t2l21

52cN(
l51

p

dlG2l21 , ~C2!

whereG2l21 is given by Eq.~B5!. Then, we immediately
obtain the relationship

N5
2

p
E
DN

2

DN
1 dt

A@~DN
1!22t2#@ t22~DN

2!2#

dV

dt
@ t21cN

2 2cN21
2 #.

~C3!

This result, rewritten forn5N21, yields in the large-N
limit
ys

,

tt.
N5
2

p
E
DN

2

DN
1 dt

A@~DN
1!22t2#@ t22~DN

2!2#

dV

dt
@ t21cN21

2 2cN
2 #.

~C4!

Equations~C3! and ~C4! yield two equations whose solu
tions determine the edge pointsDN

6 :

E
DN

2

DN
1 t2dt

A@~DN
1!22t2#@ t22~DN

2!2#

dV

dt
5

pN

2
~C5!

and

E
DN

2

DN
1 dt

A@~DN
1!22t2#@ t22~DN

2!2#

dV

dt
50. ~C6!

Finally, we note that becauseP21(«)50, it follows from
Eq. ~9! thatc050, and as a consequence, an even branchc2N
always lies lower than an odd branchc2N61, so thatc2N
,c2N61. Then, we may conclude from Eq.~A7! that

cN5
DN

12~21!NDN
2

2
. ~C7!
tt.
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@16# E. Brézin and A. Zee, Nucl. Phys. B402, 613 ~1993!.
.

@17# C. W. J. Beenakker, Nucl. Phys. B422, 515 ~1994!.
@18# S. Higuchi, C. Itoi, S. M. Nishigaki, and N. Sakai, Phys. Le

B 398, 123 ~1997!.
@19# N. Deo, Nucl. Phys. B504, 609 ~1997!.
@20# G. Szego¨, Orthogonal Polynomials~American Mathematical

Society, Providence, 1967!.
@21# J. Shohat, C. R. Hebd. Seances Acad. Sci.191, 989 ~1930!;

Duke Math. J.5, 401 ~1939!.
@22# S. S. Bonan and D. S. Clark, J. Approx. Theory46, 408

~1986!; 63, 210 ~1990!.
@23# E. Kanzieper and V. Freilikher, Philos. Mag. B77, 1161

~1998!.
@24# E. Kanzieper and V. Freilikher, Phys. Rev. Lett.78, 3806

~1997!.
@25# G. Akemann, P. H. Damgaard, U. Magnea, and S. Nishiga

Nucl. Phys. B487, 721 ~1997!.
@26# G. Akemann, P. H. Damgaard, U. Magnea, and S. Nishiga

e-print hep-th/9712006.
@27# M. J. Bowick and E. Bre´zin, Phys. Lett. B268, 21 ~1991!.
@28# B. L. Altshuler and B. I. Shklovskii, Zh. E´ ksp. Teor. Fiz.91,

220 ~1986! @Sov. Phys. JETP64, 127 ~1986!#.
@29# R. A. Jalabert, J.-L. Pichard, and C. W. J. Beenakker, Eu

phys. Lett.24, 1 ~1993!.
@30# P. Nevai, J. Approx. Theory48, 3 ~1986!.


